
1 A Dictionary-based Approach to
Solving a Substitution Cipher

1.1 Problem and Importance

Our project focuses on the substitution cipher, which
simply substitutes every character in the alphabet with
another character or symbol, resulting in a key that is
merely a permutation of the alphabet. Simple substitu-
tion ciphers are not often used in communication when
security is important, but are more commonly solved as
a hobby.

Solutions for solving substitution ciphers, however,
have applications outside of security. Our proposed al-
gorithm could operate on any number of symbol types,
needing only a reasonably small dictionary, and can there-
fore be used in optical character recognition (OCR) appli-
cations. Because this solution works for any set of sym-
bols, it has been used to label scanned text characters
after clusters of similar symbols have been defined via
unsupervised classification. While many OCR implemen-
tations require a large amount of training data, n-gram
data for the language, and must even take different fonts
into account, this algorithm to solve substitution ciphers
would only need the information contained in a small dic-
tionary. [1][2]

1.2 Related work

Solving cryptographic problems has increasingly become
a computing task, and algorithms to decode them have
come to use more advanced techniques over time. Ideas
like threshold relaxation have been used to increase the
likelihood of reaching the absolute maximum probability
of the correct cipher. [5] Genetic algorithms have also
been used, though they can suffer from a rapid conver-
gence to a suboptimal solution. [6]

Our proposed algorithm is based on the work of Hart,
which uses word frequency data to determine likely cipher
solutions. [3] We will compare the performance of this
algorithm with Hasinoff’s Quipster system, which uses a
stochastic local search algorithm with a scoring function
based on an n-gram model of English letters. [4] Although
Quipster has a relatively high success rate and does not
need a dictionary, it requires the expansion of a large
number of nodes in order to perform well.

1.3 Approach

1.3.1 Building Dictionary

To implement our algorithm for solving simple substitu-
tion ciphers, we took several novels available at Guten-
berg.org, including A Tale of Two Cities, Pride and Prej-
udice, and Anne of Green Gables, and parsed them for

word content, dropping punctuation and normalizing cap-
italization. We used the 500 most frequently appearing
words from these texts to construct a pattern dictionary.
The dictionary was implemented as a hash table with
word patterns as keys, and a list of corresponding words
as values (for example, the pattern “123445” corresponded
to the words “really” and “pretty”). All of the code was
written in the Python language (v. 2.7).

Quotes for testing were taken from a wide variety of
figures, such as Shakespeare, Aristotle and Charles Dar-
win, which were listed on Wikiquote.org. This provided
us with 94 sample messages that gave a substantial va-
riety of different phrasing, tone and word content from
different eras.

0 500 1000 1500 2000
Most frequently occurring words

0

10

20

30

40

50

60

70

80

90

C
D

F 
o
f 

w
o
rd

 o
cc

u
rr

e
n
ce

 f
re

q
u
e
n
cy

 (
%

)

Word frequency CDF

Figure 1: This figure depicts the cumulative density func-
tion plot of the 2000 most commonly-occurring words
used to construct the dictionary (there were more than
9600 different words in total). This plot shows that half
of the word occurrences in the texts came from only 63
words, and that the 500 most commonly used words (the
size of our dictionary) accounted for approximately 76%
of the word occurrences in the source texts. The fact
that so few words account for such a high percentage of
English usage is the basis for using this small dictionary-
based approach.

1.3.2 Algorithm

We implemented the recursive dictionary-based depth
first search algorithm presented by Hart. [3] Using a
dictionary to drastically narrow the search space cuts
the computation time significantly compared to searching
through every permutation of the alphabet, and the use of
such a small dictionary is enabled by the very compressed
nature of word frequencies in English communication (see
Fig. 1). For each word in the cipher set (with duplicate

1



words eliminated), the algorithm looked for words in the
dictionary that matched the character pattern of the en-
crypted word, and created a search tree based on these
words with the same pattern, with a backup method in
case the encrypted word was not in the dictionary.

The algorithm would start with a default key where
every letter maps to the special character ‘*’. For each
word in the cipher, the possible decoded words from the
dictionary represent a level in the tree, and at each level
where a dictionary word pattern matched the given ci-
pher word pattern, the score was incremented by 1, and
information from the word was added to the key.

Concretely, in terms of the previous example, if the
n-th cipher word has a pattern “123445”, then the corre-
sponding dictionary words “really” and “pretty” will form
the n-th level of the search tree, as well as the third possi-
bility that the given word is not in the dictionary. When
the algorithm explores the branches for the words “really”
and “pretty,” the score will be incremented by 1, but when
it explores the branch for the third possibility, the score
will remain the same, and no information will be added to
the key. The branches are explored by recursively calling
the function on the next word in the message.

The score was used to keep track of the best solu-
tion, and if a solution for a branch would not be able to
reach the highest recorded score, then the branch would
be pruned. Any branches would also be pruned if they
were inconsistent with the key (if one character mapped
to multiple characters, for instance). A heuristic was used
in ordering the words of the set; words with smaller pat-
tern sets were given priority, as well as words with more
characters. This is essentially the MRV heuristic.

To test the algorithm, we had a script go through each
quote and generate a random substitution key. The quote
would then be encoded with the random key, and the
algorithm would be called to solve it. The results for
character accuracy, time solved, and best solution would
then be stored in a spreadsheet for each quote.

1.4 Evaluation
We compared our method to the Quipster algorithm,
which randomly swaps letters several thousand times and
keeps the key with the best score, which is based on an
n-gram database. The primary measure we used was the
character accuracy of our solutions (the number of cor-
rect characters in a message divided by total characters,
including duplicates). The overall average character ac-
curacy of our data set was 70.31%, and the average time
to solve a cryptogram was 81.48 seconds. The accuracy
and time versus character length information can be seen
in Figures 2 and 3. Consistent with Hart’s results, the
maximum time to calculate a solution was rarely over
200 seconds.

As seen in the graphs, the character accuracy was not
very highly correlated with the length of the quote. This

0 50 100 150 200 250 300 350 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Fraction correct vs. Length of message

Length of message in letters

Fr
ac

tio
n 

co
rre

ct

Student Version of MATLAB

Figure 2: This plot shows character accuracy vs. char-
acter length of the quote. There is very little change in
accuracy as the character length increases. The average
overall accuracy of the quotes was 70.31%.

0 50 100 150 200 250 300 350 400
0

100

200

300

400

500

600

700
Computation time vs. Length of message

Length of message in letters

Ti
m

e 
in

 s
ec

on
ds

Student Version of MATLAB

Figure 3: This figure shows time taken to solve the cryp-
togram vs. length of the quote. This shows a somewhat
clearer relationship between the quote length and the time
required to solve it. The outliers likely represent exam-
ples of short quotes that were lacking a distinctive word
that could be found in the dictionary.

is very different from the Quipster results, where there is a
very evident upward trend in accuracy as the word length
increases. The Quipster algorithm approaches 100% char-
acter accuracy for quotes with word lengths of about 200

2



characters. Our algorithm never consistently achieved
this level of accuracy for any character length.

1.5 Discussion
Despite the less than perfect accuracy, most of the so-
lutions could, however, be inferred by a human reader.
Take, for example, the following solution from our algo-
rithm with only 80% accuracy: “e*e*ybody has to die, but
i always belie*ed an e*ce*tion would be made in my case.
now what?” It is fairly obvious to a human reader that
the three words missing characters could be solved with a
‘v’, ‘x’ and ‘p.’ Our algorithm could thus be useful when
supplemented with a minimal level of user oversight.

The relatively poor and inconsistent performance of our
algorithm compared to Quipster is likely due to the small
size of our dictionary. While this is beneficial in that it
requires less data storage and creates a smaller search
space, it makes the algorithm much more prone to suffer
from sampling noise. If a message happens to contain few
or no words from the dictionary, then the algorithm will
search for an excessively long time and will be unable
to reach a good solution. The Quipster algorithm, on
the other hand, relies on the n-gram model of language,
and thus benefits from the greater number of n-grams in
a message, and an n-gram database that is much larger
than our 500-word dictionary. In terms of time, Quipster
also had an advantage in that it used a computationally
cheaper algorithm that consisted of simply swapping ran-
dom characters in the key and applying a scoring function.

Thus, while our algorithm may solve cryptograms well
under ideal conditions (and can give a very usable solution
in most cases), it is far too dependent on the encrypted
words being in the dictionary. The Quipster algorithm
is based on a more sophisticated language model, and,
with modern computers, can reliably and more quickly
produce superior results, despite relying on essentially
random guesses. In summary, while the idea behind the
small dictionary solver is an interesting one, it is neither
the most effective nor efficient method for solving substi-
tution ciphers. It could, however, benefit from improve-
ments that would incorporate methods of the Quipster
algorithm, such as the n-gram scoring method or some
randomized method to better deal with words not in the
dictionary.

References
[1] G. Nagy, S. Seth, and K. Einspahr, “Decoding Sub-

stitution Ciphers by Means of Word Matching with
Application to OCR,” Pattern Analysis and Machine
Intelligence, IEEE Transactions on, vol. PAMI-9, pp.
710-715, 1987.

[2] Gary Huang, Andrew McCallum, and Erik Learned-
Miller. Cryptogram decoding for optical character

recognition. Technical Report 06-45, University of
Massachusetts Amherst, June 2006.

[3] G. W. Hart, “To decode short cryptograms,” Com-
mun. ACM, vol. 37, pp. 102-108, 1994.

[4] S. W. Hasinoff, “Solving Substitution Ciphers,” A
Technical Report. University of Toronto, 2003.

[5] S. Peleg and A. Rosenfeld, “Breaking substitution ci-
phers using a relaxation algorithm,” Commun. ACM,
vol. 22, pp. 598-605, 1979.

[6] R. Spillman, “Solving large knapsack problems with a
genetic algorithm,” in Systems, Man and Cybernetics,
1995. Intelligent Systems for the 21st Century., IEEE
International Conference on, 1995, pp. 632-637 vol.1.

3


	A Dictionary-based Approach to Solving a Substitution Cipher
	Problem and Importance
	Related work
	Approach
	Building Dictionary
	Algorithm

	Evaluation
	Discussion


