
Comparison of Learning Methods for Handwriting Recognition

Introduction

Even in this era of new technologies, handwriting has
remained an important form of communication that
sees use in bank checking, addressing postage and
filling out physical forms, among other applications.
Given the pervasive use of handwriting in daily life,
building systems which can automatically read hand-
writing has been found to be very useful. Yet the task
of recognizing characters, while trivial to humans, be-
comes very difficult with all varieties of character size,
character shape, applied writing pressure, and other
factors that vary by individual.

Our goal is to build an optical handwriting recog-
nition (OHR) system with artificial neural networks
(ANNs), which can learn from various samples of hu-
man handwriting. We plan to compare the results of
this system with those of a support vector machine
(SVM) OHR system.

Related work

One way of classifying handwriting recognition meth-
ods, like ANNs and SVMs, distinguishes between off-
line learning, where the algorithm is trained on ex-
amples ahead of time, and online learning, where the
algorithm can learn one sample at a time, and adapt
at runtime (we attempted the latter approach).

A more classical approach for OHR using SVMs
has been described, and has been improved with dif-
ferent kernels, such as the Gaussian time-warping ker-
nel [1][2][3]. A cited issue with SVMs, however, is
their high training complexity. Even when kernel-
based techniques are used to reduce over-fitting,
working with SVMs is a highly memory intensive pro-
cess.

Various other techniques of handwriting recogni-
tion have been implemented and compared for sig-
nature recognition, such as multi-layer perceptrons,
minimal distance classifiers, nearest neighbor classi-
fiers and hidden Markov models [4]. Online ANNs
have been used for classifying numerals and other
characters, and have been enhanced with adaboost-
ing, a technique that makes the algorithm more sen-
sitive to misclassified samples [3][5]. There will likely
be challenges with applying this to handwritten char-
acter recognition, however, because of the larger num-
ber of target classes (26 uppercase characters versus
10 digits).

Approach

ANNs

The primary algorithm that we implemented was
a feedforward classification ANN with perceptron
nodes, using MATLAB. We chose this because it was
the most straightforward ANN to implement, and we
trained the parameters using backpropagation. We
compared this to an SVM algorithm, using the same
set of data.

We used 1867 training examples and 468 test sam-
ples of uppercase letters, all of which we wrote by
hand and transferred to 20 × 20 pixel images (see
Figure 1). The features for our algorithm represented
the pixel values of each image, and were thus treated
as vectors in R400. While mini-strokes of characters
have also been used as features, using the pixel values
was the more straightforward method. The algorithm
output a vector a(L) ∈ R26, with a dimension for each
possible character, and we then took the dimension
with the highest value as the output (for example, if
the highest value in the output vector was in the 26th

entry, we would predict that the input image was of
the letter Z).

Figure 1: Random sample of our handwritten char-
acter data.

The perceptron ANN works by feeding an input
vector of features, a(1), into the next layer, a(2) ∈ Rn.
This can then be fed to any number of hidden lay-
ers, before finally leading to the output layer, in our
case a(L) ∈ R26. There can be an arbitrary number
of hidden layers, and each layer can have an arbi-

1



trary number of units, though in each trial we set the
hidden layers be of the same size n (see Figure 2).

x1 //

��

��

a
(2)
1

""
x2

??

//

��

a
(2)
2

// Neuron // hθ(x)

x3

GG

??

//

Layer 1

(input)

a
(2)
3

<<

Layer 2

(hidden)

Layer 3

(output)

Figure 2: Representation of artificial neural network
with an input layer of three nodes (x), a single hidden
layer of three nodes (a(2)) and a single node in the
output layer. Inputs are fed to the hidden layer by
a(2) = g(Θ(1)x), and then to the output layer and
finally to the activation function, which is the sigmoid
hypothesis function hθ(x) in this case.

In our implementation, the values of each layer,
a(l) are calculated by multiplying the previous layer
a(l−1) by a parameter matrix Θ(l−1), and taking
the sigmoid function g(z) = 1

1−exp(−z) of this. In
general, then, layer l is calculated by the equation
a(l) = g(Θ(l−1)a(l−1)). The key part of the algorithm
was determining the neural network parameters Θ(l),
which we found by backpropagation with a gradient
descent-like function.

SVMs

Classifying is often a problem solved by logistic re-
gression, but while logistic regression requires a large
number of training examples for each feature, SVMs
solve this problem by using a kernel to map the data
to higher dimensional kernel-induced feature space.
We used the radial basis function (RBF) kernel in
our project, which is given by

k(xa, xb) = e
−.5‖xa−xb‖

2

σ2 ,

and the optimization task is reduced to an iterative
greedy algorithm. For the SVM implementation, we
used the MATLAB optimization toolbox and a MDM
(Mitchell-Demyanov-Malozemov) solver for optimiz-
ing the RBF kernel.

Results

Below are the tables with the results for the ANN
and SVM. The key metrics we used were the training
time and the test accuracy. Our results show that our
ANN had the superior performance, reaching 84.5%
accuracy on the test set, compared to the maximum
81.5% of the SVM. It also took less time to train on
average, with a typical time of less than 100 minutes,
and with even the best performing trial taking less
time to train than any of the SVM trials.

We first tested the ANN algorithm for different
numbers of hidden layers, then hidden units, and fi-
nally for the regularization parameter λ, at each step
finding the optimum setting for each parameter. We
found that the accuracy was greatest with 2 hidden
layers of 400 hidden units, and with the regulariza-
tion parameter of λ = 1.

The key metrics for the SVM’s performance were
also the training time and the test accuracy, which
varied based on the threshold parameter ε and regu-
larization parameter C (the optimization function it-
erated until reaching a threshold of 10−ε). The chart
shows that the best result of 81.9% test accuracy oc-
curred while optimizing to the threshold 10−ε = 10−5

with regularization parameter C = 10.

Figure 3: Example of error from the test set: letter
C, misidentified as L by the neural net.

Discussion

The results from the neural network clearly show that
increasing the number of hidden layers only increases
the recognition rate up to a certain point before it
starts decreasing. The number of hidden layers for
ANNs is a convex function which had a maximal value
of 2 for our OHR dataset. Increasing the number
of hidden units also improved the level accuracy as
expected, until after about 400 units.

As expected, the training time for the ANN in-
creased as we raised the number of hidden units and
number of hidden layers. For the SVM, both the
ε and regularization parameter are convex functions
with optimal values, as evident from our results, with
low values of C allowing the SVM to overfit, and
higher values preventing the SVM from obtaining a

2



ANN Results
Hidden Hidden Training Training set Test Set
Layers Units Time (min) Accuracy (%) Accuracy (%) λ

2 80 40 71.8 44.6 1
2 100 45 84.6 61.1 1
2 150 76 91.9 65.6 1
2 300 137 96 81 1
2 400 44 94 81.6 0.3
2 400 101 97 84.5 1
2 400 64 94.4 70.85 3
2 400 71 93.7 73.5 10
2 500 104 96 77.6 1
3 200 60 86 63 1
4 300 217 77.7 53.65 1

SVM Results

ε C
Training Training Test
Time Accuracy Accuracy
(min) (%) (%)

5 10 123 84.3 81.9
4 10 127 81.5 77.9
3 10 110 75.3 70.2
7 10 112 72.1 62.4
6 10 119 80.2 76.8
5 1 135 85.8 70.2
5 0.1 140 90.3 65.4
5 100 110 75.3 70.3
5 1000 105 70.2 60.1

proper model. The ε parameter was used to con-
trol the senstivity used to fit the training data; a
higher value caused fewer support vectors to be se-
lected, while a lower value than the optimum only
marginally increased the accuracy. The optimal pa-
rameters are only specific to our dataset, however,
and the relative and absolute performance of the al-
gorithms would likely be much improved by a signif-
icantly larger dataset.

Due to the lack of time, we were not able to use
other variations in these techniques. A possible im-
provement could be found in choosing a different ker-
nel for the SVM, such as a linear, polynomial or sig-
moid kernel. Additionally, we could have also used
kernel functions to improve the ANN, though it would
have significantly increased the training time, which
was already exceeding 2 hours per trial in the case
with several hidden layers. Because the performance
of the ANN was already surpassing that of the SVM,
adding an RBF kernel to the ANN would have in-
creased the gap further. Another variation could have
been to use mini-strokes as features rather than raw
pixel values, which would have increased the accuracy
of the OHR in both the techniques.

A potential extension of the neural network algo-
rithm for optical character recognition could be the
detection of entire words, provided the words were
written in discrete printed format (as opposed to cur-
sive). This extension would require the training on
an entire English dictionary, which would, however,
be excessively time-consuming with our limited com-
puting power.

References
[1] C. Bahlmann, B. Haasdonk, and H. Burkhardt,

“Online handwriting recognition with support
vector machines - a kernel approach,” in Fron-
tiers in Handwriting Recognition, 2002. Proceed-
ings. Eighth International Workshop on, 2002, pp.
49-54.

[2] A. Abdul Rahim, M. Khalia, C. Viard-Gaudin,
and E. Poisson, “Online handwriting recogni-
tion using support vector machine,” in TENCON
2004. 2004 IEEE Region 10 Conference, 2004, pp.
311-314 Vol. 1.

[3] S. Cho, “Neural-Network Classifiers for Recogniz-
ing Totally Unconstrained Handwritten Numer-
als,” Neural Networks, IEEE Transactions on,
vol. 8, pp 43-53, 1997.

[4] R. Plamondon and S. N. Srihari, “Online and
off-line handwriting recognition: a comprehen-
sive survey,” Pattern Analysis and Machine Intel-
ligence, IEEE Transactions on, vol. 22, pp. 63-84,
2000.

[5] H. Schwenk, Y. Bengio, “AdaBoosting Neu-
ral Networks: Application to on-line Character
Recognition,” in International Conference on Ar-
tificial Neural Networks (ICANN ’97), pp. 967-
972, Springer, 1997.

3


