
Authorship Attribution at the Paragraph Level using SVMs

Introduction
Using statistical analysis to determine authorship has
proven helpful in many spheres. Mosteller and Wallace
conducted one of the most important early studies on au-
thor attribution, using a Naive Bayes classifier to discover
the author of The Federalist Papers.[1] But in addition to
its use for literary research, techniques for authorship at-
tribution have been used for gathering intelligence about
terrorists, identifying authors of criminal messages and
settling copyright disputes.[2] In this project, we are in-
terested in using support vector machine (SVM) classi-
fiers in order see if we can determine how much different
coauthors contribute to a given paper.

Related Work
As mentioned, Mosteller and Wallace used the counts of
high frequency language filler words (an, to, upon. . . ) as
features to, for the first time, determine the authorship
of 12 of the anonymously written Federalist Papers with
Naive Bayes. An even earlier method by Mendenhall used
sentence and word length counts as features.[2]

A similar method is the multi-variate Bernoulli model,
which only stores a binary value for whether or not a word
is present in a document, discarding the word count. It
has been shown to perform better on documents with
smaller vocabulary sizes, but has impaired performance
at larger vocabulary sizes.[3]

The Chain Augmented Naive Bayes classifier (CAN)
is a variant that additionally uses n-gram information to
improve performance, with accuracies of up to 96% when
more sophisticated smoothing techniques are used.[4] The
SVM is a more general purpose classifier that has also
been applied to text classification, with author attribu-
tion accuracies of 60-80% on newspaper data and 70-95%
on online message data.[2] Diedrich, et. al. have further
shown an SVM is capable of virtually perfect precision
when attributing authorship using various features.[5] We
will compare our performance to that of Diedrich’s paper.

Approach
We implemented a support vector classifier in an attempt
to identify the authors of small portions of text within a
document written by multiple authors. We used, as our
documents, papers written by a local computer scientist,
whom we will refer to as author A, as well as papers writ-
ten by his students and coauthors, referred to as authors
B, C and D. Our ultimate goal was to ultimately see how
confidently we could look at text down to the paragraph

level in papers with multiple authors, and distinguish who
was most likely to have written different portions of the
paper. To train and test the classifier, we first looked at
papers independently written by each of the authors.

We used features based on the results from Diederich,
et. al., in which they first classified text using relative
word frequencies as features, and then using features re-
ferred to as tag-words. While those authors obtained bet-
ter results with word frequencies, they had a much larger
dataset of thousands of documents, which varied over dif-
ferent topics. Since our training papers covered roughly
the same topic, and because topical features would not
give any discriminating information between the authors
of co-authored papers, we opted for the tag-word features,
which are considered to be more independent of context.

We obtained tag-words by concatenating a word stem
and the part of speech tag for a given word, but only
including the part of speech tag for adjectives, nouns,
verbs and numbers. So for a phrase like blue dogs run,
the corresponding tagwords, were, respectively, JJ, NNS
VBG (which represent adjective, plural noun and gerund
verb). For phrases with words of different parts of speech,
such as the honestly, the stemmed words would be the,
honestli, and the POS tags would be DT, RB (for deter-
miner and adverb), resulting in tagwords ‘the-DT’ and
‘honestli-RB’. For each paragraph, we then constructed
vectors with the frequencies of each of these tagwords,
and used SVMs to classify the authors. For word stems,
we tested and compared both the porter stemmer and
WordNet lemmatizer, and used a POS tagger based on
the Penn Treebank project, all from the Natural Lan-
guage Toolkit (NLTK) python module [6]. We used a
linear SVM from the scikit-learn python library.

The hope in using tagwords was that the relative fre-
quency of the parts of speech that different authors used
would contain more information than the raw word counts
that Naive Bayes takes into account. Furthermore, if doc-
uments in a sample are all discussing the same topic, say
wearable computing, it is unlikely that the words wear-
able and computing would be able to tell a lot about the
author. Thus, we did not use the stemmed words of ad-
jectives, nouns and verbs to construct our tagwords, in
order for the classifier to be more content-independent,
while we did use the stems of words like the and very,
in order to hopefully glean more information about the
author’s writing style.

After getting the tagwords in all the paragraphs written
by a given author, we used the tagwords to create feature
vectors to input into the SVM. Diederich, et. al. de-
scribe different helpful vector transformations for SVMs,

1



such as raw frequency (raw tagword counts) relative fre-
quency (tagword frequency divided by number of different
tagword types), logarithmic relative frequency (log of rel-
ative frequency, denoted in this paper as ‘LogRel’), and
used normalizations such as the L1 and euclidean norms.
For each author, we tried different combinations of the
above to determine the vector transformation with the
most predictive power for each author.

Results

We performed 3 major tasks:
1. Testing the classifier on paragraphs from documents

written by a single known author, using documents from
all of the authors as training data.

2. Testing the classifier on paragraphs from documents
written by a single known coauthor, using documents
solely written by that coauthor and documents solely by
author A as training data.

3. Testing the classifier on paragraphs from documents
written by 2 authors, using documents written by those
two authors individually.

For the first two tasks, we knew the authors of the
paragraphs, and thus got more reliable results. For the
third task, the author of the paragraphs was unknown,
and our corresponding results should thus be considered
unreliable at best.

For the first step, we evaluated the performance based
on the precision, recall and F-score averages after per-
forming 10-fold cross validation. The results can be seen
in Table 1. These are the results when the classifier was
trained to distinguish one author out of all 4 different au-
thors, and we did this to compare our results with those
by Dietrich, et. al. It shows that the WordNet lemma-
tizer and euclidean (L2) norm worked best for all of the
authors, and that using the raw frequency word count as
features worked best most of the time. The maximum
F-score was 0.88.

For our application, however, we already know that a
given paragraph in a co-authored paper was written by
one of 2 authors, and so we can rule out all of the other
authors for our classifier. Table 2 thus shows the 10-
fold cross-validation results for documents written by the
students, in which we only trained on the student and
author A. The lemmatizer and L2 norm were used in all
cases, and the LogRel normalization seemed to give the
best results. The highest F-score for these was 0.94.

Finally, we classified coauthored papers with training
samples from the individual authors. Ideally, we would
like a classifier that could give probability estimates for
how much a paragraph looks to be influenced by a spe-
cific author, but this was not possible since SVMs only
give binary classification predictions. We decided instead
to run the classifier 100 times for each co-authored docu-

Figure 1: Histograms of number of paragraphs classified
as being written by Author A or a student coauthor at
different frequencies. Bins to the far right represent the
number of paragraphs that the classifier attributed to the
student about 100% of the time. Bins near the middle
represent the number of paragraphs that were attributed
to each author about an equal number of times.

2



ment, using only half of the training examples (randomly
chosen) each time. A histogram of the results can be seen
in Fig. 1.

For each histogram, the bin on the far left shows how
many paragraphs the classifier predicted to be written by
author A for approximately all of the trials, and the bin on
the far right shows how many were predicted to be writ-
ten by the student for almost all of the trials, based on the
random samples of training data. The papers coauthored
by authors A and B appear to have been divided most
equally, while the number of paragraphs that the classi-
fier ascribed to author A looks to be around the noise
threshold for the paper coauthored with author C.

Discussion

As seen in the tables, most of our results were much less
accurate than those of Diedrich, et. al, whose typical F-
score was about 0.9. We believe this is largely because of
their higher sample size. At the paragraph level, our data
was much smaller, and we had a limited number of avail-
able papers written by the given authors. In contrast,
their group used a corpus of more than 2600 documents,
with dozens of papers for some authors. There was, how-
ever, a noticeable improvement when we only try discrim-
inating between two authors, rather than between a given
author and all the rest. This improved the accuracy of
the classifier to around the accuracy of Diedrich’s results.

Our small amount of training data, however, makes us
less confident in the results of attributing authors at the
paragraph level. Even beyond the fact of such small sam-
ple sizes, our model assumes that papers are discretely
written by different individuals at the paragraph level,

Table 1: Results of the SVM on individually-written pa-
pers, averaged after 10-fold cross-validation, along with
the feature frequency transformations that yielded the
best results. The training data consisted of individually-
written papers from all of the authors.

Num. Ave. Words/ Total Words
Fscore Precision Recall Stemming Normalization Paragraphs paragraph (×1000 )

Author A 0.57 0.72 0.48 Lemma. L2, LogRel 205 97 20
Author B 0.64 0.63 0.65 Lemma. L2, Raw freq. 241 95 23
Author C 0.88 0.85 0.90 Lemma. L2, Raw freq. 1010 56 57
Author D 0.61 0.66 0.57 Lemma. L2, Raw freq. 318 101 32

Table 2: Results of the SVM on individually-written pa-
pers. The training data consisted of papers of only the
given coauthor and author A.

Fscore Precision Recall A Fscore A Precision A Recall Normalization
Author B 0.85 0.86 0.85 0.86 0.89 0.84 L2, LogRel
Author C 0.94 0.90 0.98 0.63 0.83 0.52 L2, Raw Frequency
Author D 0.85 0.84 0.85 0.71 0.76 0.67 L2, LogRel

when the writing process leaves much room for authors
changing the tones and expressions they use while writing
about a given topic, as a result of the research environ-
ment.

In general, this task is especially difficult given the lack
of training data, as coauthors do not typically annotate
their papers by labeling the author of each individual
paragraph. When discriminating against 2 authors, how-
ever, the SVM classifier performed better, and improved
even further for the author with the most available train-
ing data, author C. It would thus be worthwhile to in-
vestigate authorship attribution among coauthors with a
larger set of data, and possibly with more classifiers.

References
[1] F. Mosteller and D. Wallace. Inference In An Author-

ship Problem. Journal of the American Statistical As-
sociation, Volume 58, Issue 302 (1963), 275-309.

[2] E. Stamatatos. A Survey of Modern Authorship At-
tribution Methods. University of the Aegean, Greece.

[3] A. McCallum, and K. Nigam. A Comparison of Event
Models for Naive Bayes Text Classification.

[4] F. Peng and D. Schuurmans. Combining Naive Bayes
and n-Gram Language Models for Text Classification.
ECIR (2003), 335-350.

[5] J. Diederich, J. Kinderman, E. Leopold and G. Paass.
Authorship Attribution with Support Vector Machine.
Applied Intelligence 19 (2003), 109-123.

[6] S. Bird. NLTK: The Natural Language Toolkit. Uni-
versity of Melbourne, Australia.

3


